Statistics 654 Comprehensive Written Exam August, 2013

Instructions: Answer the following questions to the best of your ability. Please show your work, and briefly explain your reasoning as necessary. Correct answers with no work/justification will not receive full credit.

If you cannot answer a questions completely, write down, succinctly, the ideas you have for approaching the problem. Please write clearly.

- 1. Let U, V be random variables with finite second moment, and let $SD(\cdot)$ denote the usual standard deviation. Find an inequality relating |SD(U) SD(V)| and SD(U V).
- 2. Let X be a random variable with a CDF $F(\cdot)$ that is strictly increasing, and therefore invertible. What is the distribution of F(X)?
- 3. Define what it means for a family \mathcal{P} of densities to be a scale family.
- 4. Define the notion of a pivot in the theory of confidence sets.
- 5. Let U_1, \ldots, U_n be an i.i.d. sample from a density f in a scale family \mathcal{P} . Describe three essentially different pivots for this situation.
- 6. Let U, V be independent $\mathcal{N}(0, 1)$ random variables. Are U + V and U V independent? Explain your answer.
- 7. Let X_1, \ldots, X_n be i.i.d. $\mathcal{N}(\theta, \sigma^2)$, where $\sigma^2 > 0$ is known.
- a. Find the likelihood ratio tests of $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$, and express the test in a simple form. You may find it convenient to use the identity $\sum_{i=1}^{n} (u_i v)^2 = \sum_{i=1}^{n} (u_i \overline{u})^2 + n(\overline{u} v)^2$.
- b. Invert the test in part (a) to find a $1-\alpha$ confidence interval for θ .
- c. Is the test in part (a) unbiased? Justify your answer.

8. Let X_1, \ldots, X_n be i.i.d. random variables taking values in [0,1] and such that $EX_i = 1/2$. We are interested in upper bounds on the probability

$$\mathbb{P}\left(\frac{X_1}{X_1 + \dots + X_n} \ge \frac{t}{n}\right) \tag{1}$$

for values of t > 1.

- a. Find the expected value of $X_1/(X_1+\cdots+X_n)$. (No extensive calculations are necessary.)
- b. Find an upper bound on the probability in (1) using the Bounded Difference (McDiarmid) inequality. Show your work.
- c. Find a better bound on the probability in (1).
- 9. Let $Y \sim \mathcal{N}(0, \Sigma)$ be a multi-normal random vector with covariance matrix Σ . Suppose that $EY_i^2 = 1$ for $1 \leq i \leq n$ and that every entry of ΣI is non-negative, where I denotes the $n \times n$ identity matrix. Let $\Phi(\cdot)$ be the CDF of the standard normal. Show that

$$\mathbb{E}\big(\Phi(Y_1)\cdots\Phi(Y_n)\big) \geq 2^{-n}.$$