Statistics 654 Comprehensive Written Exam August, 2021

Instructions: Each question is weighted equally. Partial credit will be given for each part of a problem. In some cases, different parts of a problem can be done independently, so if you are unsure how to handle one part of a problem, don't hesitate to try the others. No answer should require a great deal of computation. Please show your work, and briefly explain your reasoning: correct answers without supporting work will not receive full credit. Please write clearly.

Note that this exam is internet free, closed notes, and closed book. You only need a pencil or pen, and paper.

1. Let $X \in \mathbb{R}$ be a random variable with $\mathbb{E} X=0$ and $\operatorname{Var}(X)=1$. Define $h(t)=\mathbb{E}[X \mathbb{I}(X \geq t)]$.
a. Show that $h(t)=-\mathbb{E}[X \mathbb{I}(X<t)]$. Is $h(0)=0$?
b. Show that $h(t)$ is a probability density function.
2. Let P and Q be distributions on \mathbb{R} with densities f and g, respectively.
a. Define the total variation distance $\operatorname{TV}(P, Q)$ in terms of f and g.
b. Define the Hellinger distance $\mathrm{H}(P, Q)$ in terms of f and g.
c. Show that for $a, b \geq 0$ one has $|a-b|=a+b-2 \min (a, b)$ and $\sqrt{a b} \geq \min (a, b)$.
d. Show that $\mathrm{TV}(P, Q)$ can be lower bounded by a multiple of $\mathrm{H}^{2}(P, Q)$.
3. Let M_{n} be the maximum of n iid $\mathcal{N}(0,1)$ random variables.
a. As carefully as you can, state the Gaussian extreme value theorem in terms of M_{n}. You need not prove anything.
b. What can you say about the limiting value of $\mathbb{P}\left(M_{n} \geq \sqrt{2 \log n}\right)$ as $n \rightarrow \infty$? Carefully justify your answer.
4. Let $\mathcal{P}=\{f(x \mid \theta): \theta \in \Theta\}$ be a family of densities on a set \mathcal{X}, and suppose that we are interested in estimating θ from an observation $X \in \mathcal{X}$ with $X \sim f(x \mid \theta) \in \mathcal{P}$.
a. Define what is meant by an estimator and a loss function in this setting.
b. Define the risk function of an estimator.
c. Define the Bayes risk of an estimator under a prior distribution π on Θ.
d. Let \mathcal{D} be a family of estimators. Define the minimax risk and optimal Bayes risk under π for the family \mathcal{D}.
e. Establish an inequality between the minimax risk and the Bayes risk.
5. Let $X=\left(X_{1}, \ldots, X_{d}\right)^{t} \in \mathbb{R}^{d}$ be a random vector with $\mathbb{E} X=0$ and $\operatorname{Var}(X)=\Sigma$, and let $Y \in \mathbb{R}$ be a random variable defined on the same probability space as X with $\mathbb{E} Y^{2}$ finite. Let

$$
A=\left\{j: X_{j} \text { is independent of } Y\right\},
$$

and let $B=\{1, \ldots, d\} \backslash A$ be the complement of A. Assume that A and B are non-empty. Let $X_{A}=\left(X_{j}\right)_{j \in A}$ and $X_{B}=\left(X_{j}\right)_{j \in B}$ be the restriction of X to the components indexed by A and B, respectively. Now consider a solution

$$
\beta^{*} \in \underset{\beta \in \mathbb{R}^{d}}{\operatorname{argmin}} \mathbb{E}\left(Y-\beta^{t} X\right)^{2}
$$

of the standard linear regression problem. (Note that there may be more than one minimizing vector.) It is reasonable to expect that $\beta_{A}^{*}=\left(\beta_{j}^{*}\right)_{j \in A}=0$, as the the variables X_{A} are independent of Y. Show that $\beta_{A}^{*}=0$ if the entries of $\operatorname{Cov}\left(X_{A}, X_{B}\right)$ are zero and an additional condition is satisfied; clearly state the additional condition you need.

