Consider a regression with two predictors \(x_{i1}, x_{i2}, i = 1, \ldots, n \), and assume the model

\[
y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i, \quad i = 1, \ldots, n
\]

where \(\beta_0, \ldots, \beta_3 \) are unknown parameters and \(\epsilon_i \sim N(0, \sigma^2) \) are independent errors with common unknown variance \(\sigma^2 \). Note that the model has just the interaction term \(\beta_3 x_{i1} x_{i2} \) but no terms in \(x_{i1}^2 \) or \(x_{i2}^2 \). It is natural to want to test whether \(H_0 : \beta_3 = 0 \).

Defining \(S_{jk} = \sum_{i=1}^{n} x_{i1}^j x_{i2}^k \) let us further assume: \(S_{10} = S_{01} = S_{11} = S_{12} = 0 \) but that \(S_{20}, S_{02}, S_{21}, S_{22} \) are not 0.

(a) Find explicit expressions for the least squares estimators \(\hat{\beta}_0, \ldots, \hat{\beta}_3 \) in terms of the \(S_{jk} \)'s and \(\sum y_i, \sum y_i x_{i1}, \sum y_i x_{i2} \) and \(\sum y_i x_{i1} x_{i2} \). [12 points]

(b) Find expressions for the standard errors of \(\hat{\beta}_0, \ldots, \hat{\beta}_3 \), in terms of \(n, S_{20}, S_{02}, S_{21}, S_{22} \) and the residual standard deviation \(s \) (assuming that \(s^2 \) is the standard unbiased estimator of \(\sigma^2 \)). [5 points]

(c) A \(t \)-test of significance level \(\alpha \) will reject \(H_0 \) if \(|\frac{\hat{\beta}_3}{s}| > C \) for some \(C \) which is a combination of \(n, S_{20}, S_{02}, S_{21}, S_{22} \) and \(\alpha \) (alpha). Find \(C \). (You may, if you wish, express your answer as an appropriate R function.) [5 points]

(d) What is the power of the test in (c) when \(\beta_3 \neq 0 \)? You answer should be expressed in terms of the given parameters and relevant percentage points of the noncentral \(t \) or \(F \) distributions. (You may choose to express your answer as an R function though alternatives are also acceptable if the derivation behind your answer is clearly explained.) (Hint: First find the distribution of \(\frac{\hat{\beta}_3^2}{s^2} \) when \(\beta_3 \neq 0 \).) [16 points]

(e) Show that the observation with highest leverage is the index \(i \) that maximizes

\[
x_{i2}^2 (S_{20} S_{22} - S_{21}^2) + x_{i1}^2 S_{02} (S_{22} - 2 S_{21} x_{i2} + x_{i2}^2 S_{20}).
\]

[12 points]