Department of Statistics and Operations Research The University of North Carolina at Chapel Hill
 August, 2023

Optimization Qualifying Examination

Information:

- Student's full name: \qquad
- Student's signature: \qquad
- Date: August 14, 2023. Time: 9:00 AM - 1:00 PM.
- Honor pledge: I have neither given nor received unauthorized assistance on this exam.

General instructions: Please carefully read the following instructions before answering.
a. Write your name on this sheet. Date and sign on the first page.
b. This examination is closed-books and notes, and consists of two questions.
c. Answer all two as clearly and concisely as you are able.
d. Use of the internet, computers, and/or mobile devices is not permitted.

The exam questions

Question 1: (50 points) Consider the following convex quadratic program:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{p}}\left\{f(x):=\frac{1}{2} x^{T} Q x+q^{T} x \quad \text { subject to } \quad A x=b\right\} \tag{QP}
\end{equation*}
$$

where Q is a $p \times p$ symmetric positive semidefinite matrix, $q \in \mathbb{R}^{p}, A \in \mathbb{R}^{n \times p}$ is a full-row rank matrix such that $\operatorname{rank}(A)=n<p$, and $b \in \mathbb{R}^{n}$. Consider the dual function of (QP) defined as

$$
d(y):=\min _{x \in \mathbb{R}^{p}}\left\{\frac{1}{2} x^{T} Q x+q^{T} x+y^{T}(A x-b)\right\} .
$$

Solve the following questions:
(a) Prove that d is a concave quadratic function (i.e., $-d$ is a convex quadratic function).
(b) Prove that if d is strictly concave, then it is also strongly concave.
(c) Explicitly solve (QP) when $Q=\mathbb{I}$, the identity matrix.

Note: A quadratic function is a function of the form $d(y)=\frac{1}{2} y^{T} H y+h^{T} y$ for a given symmetric matrix H and a vector h.

Question 2: (50 points) We call a sequence of zeros and ones a string. We say that a string w is a superstring of the string x if $w=s x t$ where s and t are strings.

We say that a string w is a common superstring of the strings x and y if w is a superstring of both x and y. For example, if $x=101$ and $y=11$ then 10111 is trivially a common superstring of x and y. But 1011 is also a common superstring of x and y.

Given the strings x_{1}, \ldots, x_{m} we want to find the shortest common superstring of x_{1}, \ldots, x_{m}.
Formulate as an IP. The number of variables and constraints in your formulation should be polynomial in m and $\ell_{1}+\ldots \ell_{m}$ where ℓ_{i} is the length of x_{i} for all i.

Clearly define variables and explain the meaning of all constraints.

