STOR 634, CWE 2022-23.

Each problem is 10 points. There are 5 problems in all.

1. (10 points)

a. (2 pts) Suppose that $\{X_{\alpha}\}_{\alpha \in \mathcal{I}}$ is a family of real valued random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Say what it means for this family to be uniformly integrable.

b. (3 *pts*) Suppose that the above family is uniformly integrable. Show that for every $\varepsilon > 0$ there is a $\delta > 0$ such that whenever $\mathbb{P}(A) < \delta$,

$$\sup_{\alpha \in \mathcal{I}} \int_A |X_\alpha| d\mathbb{P} < \varepsilon.$$

c. (2 pts) Suppose now that $\mathcal{I} = \mathbb{N}$ so that $\{X_n\}$ is a sequence of uniformly integrable random variables. Suppose that $X_n \to X$ in probability for some real random variable X. Show that $\mathbb{E}|X| < \infty$ and that the sequence $\{|X_n - X|\}$ is uniformly integrable.

d. (3 *pts*) With $\{X_n\}$ and X as in part (c) show that $X_n \to X$ in \mathcal{L}^1 . [Hint: Consider the set $\{|X_n - X| \leq M\}$ and its complement.]

2. (10 points)

a. (4 *pts*) State Kolmogorov's three series theorem.

b. (6 pts) Let $\{X_n\}$ be a sequence of independent random variables on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\psi(x) = x^2$ when $|x| \leq 1$ and $\psi(x) = |x|$ when $|x| \geq 1$. Suppose that $\mathbb{E}X_n = 0$ for every n and $\sum_{n=1}^{\infty} \mathbb{E}\psi(X_n) < \infty$. Show that $\sum_{n=1}^{\infty} X_n$ converges a.s.

3. (10 points) Let $\{\mu_n\}$ be a sequence of probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and let μ be another probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

a. (2 pts) Say what it means for the sequence $\{\mu_n\}$ to be tight.

b. (4 pts) Suppose that for every continuous real valued function f on \mathbb{R} with compact support $\int f d\mu_n \to \int f d\mu$. Show that the sequence $\{\mu_n\}$ is tight. [Hint: For $M < \infty$ consider a continuous nonnegative function f that is 1 on [-M, M] and zero outside [-(M+1), M+1]]

c. (4 pts) With $\{\mu_n\}$ as in part (b), show that μ_n converges weakly to μ . [Hint: Use tightness and approximate the indicator function of an interval [a, b] by continuous nonnegative functions of compact support in a suitable manner.]

4. (10 points) Let μ_n be probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with ch.f. φ_n .

a. (2 *pts*) Say what it means for the sequence $\{\varphi_n\}$ to be equicontinuous.

b. (4 *pts*) Suppose that $\{\mu_n\}$ is tight. Show that the sequence $\{\varphi_n\}$ is equicontinuous.

c. (4 *pts*) Suppose next that $\mu_n \to^d \mu_\infty$. Show that $\varphi_n(t) \to \varphi_\infty(t)$ uniformly in $t \in [0, T]$ for every T, where φ_∞ is the ch.f. of μ_∞ .

5. (10 points) Let (Ω, \mathcal{F}, P) be a probability space and let $\{A_n\}$ be a sequence of events in \mathcal{F} .

a. (3 *pts*) Give the definition of $\limsup A_n$ and $\liminf A_n$. Show that $\liminf A_n \subset \limsup A_n$.

b. (3 *pts*) Show that $1_{\limsup A_n} = \limsup 1_{A_n}$.

c. (4 pts) Let $\{X\}_{n\in\mathbb{N}}$ be a sequence of \mathbb{R} -valued random variables on the above probability space. Suppose that $\sum_{n=1}^{\infty} \mathbb{P}(|X_n| > \varepsilon) < \infty$. Show that $\{\lim_{n\to\infty} X_n \text{ exists and equals } 0\}$ is in \mathcal{F} and that $\mathbb{P}(\lim_{n\to\infty} X_n = 0) = 1$.