STOR 634, CWE 2022-23.

Each problem is 10 points. There are 5 problems in all.

1. (10 points)
a. (2 pts) Suppose that $\left\{X_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ is a family of real valued random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Say what it means for this family to be uniformly integrable.
b. (3 pts) Suppose that the above family is uniformly integrable. Show that for every $\varepsilon>0$ there is a $\delta>0$ such that whenever $\mathbb{P}(A)<\delta$,

$$
\sup _{\alpha \in \mathcal{I}} \int_{A}\left|X_{\alpha}\right| d \mathbb{P}<\varepsilon
$$

c. (2 pts) Suppose now that $\mathcal{I}=\mathbb{N}$ so that $\left\{X_{n}\right\}$ is a sequence of uniformly integrable random variables. Suppose that $X_{n} \rightarrow X$ in probability for some real random variable X. Show that $\mathbb{E}|X|<\infty$ and that the sequence $\left\{\left|X_{n}-X\right|\right\}$ is uniformly integrable.
d. (3 pts) With $\left\{X_{n}\right\}$ and X as in part (c) show that $X_{n} \rightarrow X$ in \mathcal{L}^{1}. [Hint: Consider the set $\left\{\left|X_{n}-X\right| \leq M\right\}$ and its complement.]
2. (10 points)
a. (4 pts) State Kolmogorov's three series theorem.
b. (6 pts) Let $\left\{X_{n}\right\}$ be a sequence of independent random variables on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\psi(x)=x^{2}$ when $|x| \leq 1$ and $\psi(x)=|x|$ when $|x| \geq 1$. Suppose that $\mathbb{E} X_{n}=0$ for every n and $\sum_{n=1}^{\infty} \mathbb{E} \psi\left(X_{n}\right)<\infty$. Show that $\sum_{n=1}^{\infty} X_{n}$ converges a.s.
3. (10 points) Let $\left\{\mu_{n}\right\}$ be a sequence of probability measures on ($\mathbb{R}, \mathcal{B}(\mathbb{R})$) and let μ be another probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
a. (2 pts) Say what it means for the sequence $\left\{\mu_{n}\right\}$ to be tight.
b. (4 pts) Suppose that for every continuous real valued function f on \mathbb{R} with compact support $\int f d \mu_{n} \rightarrow \int f d \mu$. Show that the sequence $\left\{\mu_{n}\right\}$ is tight. [Hint: For $M<\infty$ consider a continuous nonnegative function f that is 1 on $[-M, M]$ and zero outside $[-(M+1), M+1]$]
c. (4 pts) With $\left\{\mu_{n}\right\}$ as in part (b), show that μ_{n} converges weakly to μ. [Hint: Use tightness and approximate the indicator function of an interval $[a, b]$ by continuous nonnegative functions of compact support in a suitable manner.]
4. (10 points) Let μ_{n} be probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with ch.f. φ_{n}.
a. (2 pts) Say what it means for the sequence $\left\{\varphi_{n}\right\}$ to be equicontinuous.
b. (4 pts) Suppose that $\left\{\mu_{n}\right\}$ is tight. Show that the sequence $\left\{\varphi_{n}\right\}$ is equicontinuous.
c. (4 pts) Suppose next that $\mu_{n} \rightarrow^{d} \mu_{\infty}$. Show that $\varphi_{n}(t) \rightarrow \varphi_{\infty}(t)$ uniformly in $t \in[0, T]$ for every T, where φ_{∞} is the ch.f. of μ_{∞}.
5. (10 points) Let (Ω, \mathcal{F}, P) be a probability space and let $\left\{A_{n}\right\}$ be a sequence of events in \mathcal{F}.
a. (3 pts) Give the definition of $\lim \sup A_{n}$ and $\liminf A_{n}$. Show that $\lim \inf A_{n} \subset$ $\limsup A_{n}$.
b. (3 pts) Show that $1_{\lim \sup A_{n}}=\limsup 1_{A_{n}}$.
c. (4 pts) Let $\left.\{X)_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of \mathbb{R}-valued random variables on the above probability space. Suppose that $\sum_{n=1}^{\infty} \mathbb{P}\left(\left|X_{n}\right|>\varepsilon\right)<\infty$. Show that $\left\{\lim _{n \rightarrow \infty} X_{n}\right.$ exists and equals 0$\}$ is in \mathcal{F} and that $\mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}=0\right)=1$.

