STOR 635 Exam: CWE Year: 2023

There are 4 questions. Attempt all questions. You may appeal to any result proved in class without proof unless you are specifically asked to "Give a complete proof.". State any result you use. All questions are worth the same number of total points (10 points). Points for parts of a question can be found in boxes on the right. Even if you don't know the complete solution DONT STRESS OUT. Put down your attempt. Partial credit will be assigned so try your best on each question.

1. 10 points Recall that we talked about conditional expectations in class given a sub-sigma field $\mathcal{G} \subseteq \mathcal{F}$. For any event $A \in \mathcal{F}$, define

$$
\mathbb{P}(A \mid \mathcal{G}):=\mathbb{E}(\mathbb{1}\{A\} \mid \mathcal{G})
$$

namely the conditional expectation of the indicator function of the set A given \mathcal{G}. Now for $i=1,2$, let X_{i} be random variables defined on (Ω, \mathcal{F}, P) taking values in space S_{i} (with associated sigma-fields \mathcal{S}_{i}). Let \mathcal{G} be a sub-sigma field of \mathcal{F}. Prove that the following assertions (a), (b), (c) are equivalent. When any one of these assertions hold, we says X_{1}, X_{2} are conditionally independent given \mathcal{G}.
(i) $\mathbb{P}\left(X_{1} \in A_{1}, X_{2} \in A_{2} \mid \mathcal{G}\right)=\mathbb{P}\left(X_{1} \in A_{1} \mid \mathcal{G}\right) \mathbb{P}\left(X_{2} \in A_{2} \mid \mathcal{G}\right)$ for all $A_{i} \in \mathcal{S}_{i}$.
(ii) $\mathbb{E}\left(h_{1}\left(X_{1}\right) h_{2}\left(X_{2}\right) \mid \mathcal{G}\right)=\mathbb{E}\left(h_{1}\left(X_{1}\right) \mid \mathcal{G}\right) \mathbb{E}\left(h_{2}\left(X_{2}\right) \mid \mathcal{G}\right)$ for all bounded measurable $h_{i}: \mathcal{S}_{i} \rightarrow \mathbb{R}$.
(iii) $\mathbb{E}\left(h_{1}\left(X_{1}\right) \mid \mathcal{G}, X_{2}\right):=\mathbb{E}\left(h_{1}\left(X_{1}\right) \mid \mathcal{G}\right)$ for all bounded measurable $h_{1}: S_{1} \rightarrow \mathbb{R}$. Here when we write $\mathbb{E}\left(\cdot \mid \mathcal{G}, X_{2}\right)$ for the conditional expectation $\mathbb{E}\left(\cdot \mid \mathcal{G}^{*}\right)$ where

$$
\mathcal{G}^{*}=\sigma\left(\mathcal{G} \cup \sigma\left(X_{2}\right)\right)
$$

Note: A π class generating this sigma field is

$$
\mathcal{P}:=\left\{X_{2}^{-1}(B) \cap A: B \in \mathcal{S}_{2}, A \in \mathcal{G}\right\}
$$

2. 10 points Let S_{n} be the total assets of an insurance company at the end of year n. Suppose that in year n the company receives premiums of c and pays claims totaling ξ_{n}, where ξ_{n} are independent with $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution, where $0<\mu<c$. The company is ruined if its assets fall to zero or below. Show

$$
\mathbb{P}(\text { ruin }) \leqslant \exp \left(-2(c-\mu) S_{0} / \sigma^{2}\right)
$$

3. 10 points Suppose $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ be two independent Markov chains on a countable state space S (without loss of generality assume $S=\{1,2, \ldots$,$\}) with X_{0}=i$ and $Y_{0}=j$ with the same transition matrix $\mathbf{P}=\left(P(x, y)_{x, y \in S}\right.$. Then (you do not need to assume this) $\left\{\left(X_{n}, Y_{n}\right): n \geqslant 0\right\}$ is is a Markov chain on state space $S \times S$. Assume the transition matrix \mathbf{P} results in the corresponding Markov chain being irreducible and positive recurrent.
(a) 7 points If \mathbf{P} is aperiodic, show that this implies the product chain is also irreducible and positive recurrent.
(b) 3 points Give a counter example to show that is the chain is not aperiodic, then the product chain need not be irreducible on the state space $S \times S$.
4. 10 points Let $\left\{\mathcal{F}_{n}: n \geqslant 0\right\}$ be a filtration and let $\left\{X_{n}: n \geqslant 0\right\}$ be an adapted process with $\mathbb{E}\left(\left|X_{n}\right|\right)<$ ∞ for all $n \geqslant 0$. Show that $\left\{X_{n}: n \geqslant 0\right\}$ is a martingale if and only if $\mathbb{E}\left(X_{T}\right)=\mathbb{E}\left(X_{0}\right)$ for every bounded stopping time T.
5. 10 points Suppose $\left\{X_{i}: i \geqslant 1\right\}$ are a sequence of real valued exchangeable (not necessarily integrable i.e. one could have $\left.\mathbb{E}\left(\left|X_{1}\right|\right)=\infty\right)$ random variables. Further suppose $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a bounded measurable function. Give a complete proof to show that there exists a random variable Y_{∞} such that

$$
\frac{\sum_{i=1}^{n} \varphi\left(X_{i}\right)}{n} \xrightarrow{\text { a.s. }} Y_{\infty}
$$

If you are planning to use De-Finetti's theorem then give a complete proof to show how one can derive the result above from De-Finetti's theorem. Just writing down De-Finetti implies "conditionally i.i.d. and thus we get the above result " will get you at most 3 points unless you can clearly justify how you can use De-Finetti to prove the above result. Note: you can also prove the above result directly without appealing to De-Finetti.

STOR 635 End

