Statistics 655 Comprehensive Written Exam
 August 2023

All problems have equal weight; partial credit will be given for each part of a problem. In budgeting your time, note that some parts will take longer than others. In many cases, different parts of a problem can be done independently, so if you are unsure how to handle one part of a problem, don't hesitate to try the others. No answer should require a great deal of computation or a complicated proof.

1. Let $A \subseteq \mathbb{R}^{n}$ be a closed set, and let $x^{*} \in A$ be fixed. Note that A may be unbounded. Suppose that we observe $y_{i}=x_{i}^{*}+\varepsilon_{i}$ for $i=1, \ldots, n$, where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are independent noise variables with mean zero and variance one. Let $y=\left(y_{1}, \ldots, y_{n}\right)^{t}$ and $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{t}$. Consider the estimate

$$
\hat{x}=\underset{x \in A}{\arg \min }\|y-x\|
$$

(a) Argue as carefully as you can that \hat{x} is well defined (that is, the minimum in the definition exists) with probability one.
(b) Show that $\mathbb{E}|\mid y-\hat{x} \| \leq \sqrt{n}$.
(c) Show that $\left\|\hat{x}-x^{*}\right\|^{2} \leq 2\left\langle\varepsilon, \hat{x}-x^{*}\right\rangle$
2. Let $\left(X_{1}, Y_{1}\right)^{t},\left(X_{2}, Y_{2}\right)^{t}, \ldots \in \mathbb{R}^{2}$ be iid such that $\mathbb{E} X_{i}=1, \mathbb{E} Y_{i}=2, \operatorname{Var}\left(X_{i}\right)=\operatorname{Var}\left(Y_{i}\right)=1$, and $\operatorname{Cov}\left(X_{i}, Y_{i}\right)=\rho$. What can you say about the limiting behavior of

$$
\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{i=1}^{n} Y_{i}\right)
$$

after appropriate scaling and centering?
3. Let $X_{1}, X_{2}, \ldots, X \in \mathbb{R}^{d}$ be random vectors defined on the same probability space.
(a) Define the relations $X_{n}=O_{p}(1)$ and $X_{n}=o_{p}(1)$.
(b) Argue carefully that if X_{n} converges to X in probability then $X_{n}=O_{p}(1)$.
4. Let $A \subseteq \mathbb{R}^{n}$ be a convex set containing the zero vector, and let $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{t}$ where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are independent noise variables with mean zero and variance one. For $s>0$ define the function

$$
H(s)=\mathbb{E}\left[\sup _{x \in A,\|x\| \leq s}\langle x, \varepsilon\rangle\right]
$$

(a) Show that $H(s) \geq 0$. Find an upper bound on $H(s)$ that involves s and the dimension n.
(b) Show that $H(s)$ is non-decreasing.
(c) Show that $H(s) / s$ is non-increasing.
(d) Suppose now that the noise variables $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are iid $\mathcal{N}(0,1)$. For $t>0$ find a bound on

$$
\mathbb{P}\left(\sup _{x \in A,\|x\| \leq s}\langle x, \varepsilon\rangle>t\right)
$$

(e) Use the probability bound in (d) to get a bound on $H(s)$ in the normal noise case. How does this bound compare to that in part (a)?

