STOR 642
Comprehensive Written Examination
August 2011

This test consists of two questions.
This is a closed book exam.
Explain your answers in detail.
The duration of the exam is 2 hours.
The relative weights are given in the parentheses.

Problem 1. Patients arrive at a clinic one by one. The \(n \)th patient at a clinic is scheduled to arrive time \(nd \), \(n = 0, 1, 2, \ldots \), where \(d > 0 \) is a fixed number. The \(n \)th patient fails to show up for his/her appointment with probability \(\theta \), independently of all other patients. There is a single doctor who sees the patients in a first come first served fashion. The service times are iid \(\text{Exp}(\mu) \). Let \(X(t) \) be the number of customers in the clinic at time \(t \). Let \(X_n \) be the number of patients in the clinic just before the \(n \)th scheduled arrival time, and \(Y_n \) be the number of patients in the clinic as seen by the \(n \) patient who actually arrives.

1. (5) Show that the following limit exists:

\[
p_j = \lim_{n \to \infty} P(X_n = j), \quad j \geq 0.
\]

Compute it.

2. (5) Show that the following limit exists:

\[
q_j = \lim_{n \to \infty} P(Y_n = j), \quad j \geq 0.
\]

Compute it.

3. (2) Define a Markov regenerative process. Show that \(\{X(t), t \geq 0\} \) is a Markov regenerative process.

4. (5) Show that the following limit exists:

\[
r_j = \lim_{t \to \infty} P(X(t) = j), \quad j \geq 0.
\]

Compute it.

5. (3) What is the relationship among the \(p_j \)'s, \(q_j \)'s and \(r_j \)'s?

6. (5) Suppose the waiting costs of the patients is \(w \) per unit time, and the idle time of the doctor costs \(h \) per unit time. Compute the long run cost per unit time as a function of \(d \).
Problem 2. (You may use the fact given at the end of this problem if needed.)

1. (1) Define a standard Brownian.

2. (2) Define a renewal process. Define transience and recurrence of a renewal process. Give the criteria for transience and recurrence.

3. (4) Let \(\{B(t), t \geq 0\} \) be a standard Brownian motion. Define \(S_0 = 0 \) and

\[
S_{n+1} = \min\{t > S_n : B(t) \in \{B(S_n) - 1, B(S_n) + 1\}\}, \ n \geq 0.
\]

Let

\[
N(t) = \sup\{n \geq 0 : S_n \leq t\}. \quad (1)
\]

Show that \(\{N(t), t \geq 0\} \) is a renewal process. Is it transient or recurrent?

4. (4) State and prove the almost sure version of the elementary renewal theorem for a recurrent renewal process.

5. (4) Compute \(\lim_{t \to \infty} N(t)/t \), where \(N(t) \) is as defined in Equation 1.

6. (2) Compute \(E(\int_0^{S_1} B^2(u) du | B(0) = 0) \).

7. (1) Define a renewal reward process.

8. (4) Define \(R(t) = \int_0^t [B(u) - B(T_{N(u)})]^2 du \). Show that \(\{R(t), t \geq 0\} \) is a renewal reward process.

9. (3) Compute \(\lim_{t \to \infty} R(t)/t \).

Fact: Let \(\{B(t), t \geq 0\} \) be a standard Brownian motion, \(T_{ab} = \min\{t \geq 0 : B(t) \in \{a, b\}\} \). Let \(c(x) = E(\int_0^{T_{ab}} f(B(u)) du | B(0) = x) \) for \(a \leq x \leq b \). Then \(c \) satisfies the differential equation

\[
\frac{1}{2}c''(x) = -f(x),
\]

with boundary condition \(c(a) = c(b) = 0 \).