Problem 1. Let X be a whole space. Suppose A_n, $n = 1, \ldots, N$, is a finite partition of X, that is, A_n’s are pairwise disjoint and $\sum_{n=1}^{N} A_n = X$. Show that a function $f : X \to \mathbb{R}$ is $\sigma(\{A_n, n = 1, \ldots, N\})$-measurable if and only if f is constant on each A_n.

Problem 2. Let μ be a measure on a field F. Show that the “distance” $d(A, B) = \mu(A \triangle B)$, $A, B \in F$, satisfies the triangle inequality, that is, $d(A, B) \leq d(A, C) + d(C, B)$ for $A, B, C \in F$.

Problem 3. Suppose that f_n converges to f in measure on (X, S, μ). Let $g : \mathbb{R} \to \mathbb{R}$ be a Borel function. (a) If g is continuous on \mathbb{R} and $\mu(X) < \infty$, show that $g(f_n)$ converges to $g(f)$ in measure. (b) Show with an example that (a) is incorrect in general when $\mu(X) = \infty$.

Problem 4. Let (X, S, μ) be a measure space, f an integrable function and $E_n = \{x \in X : |f(x)| \geq n\}$, $n \geq 1$. (a) Show that if E is the set where f is not finite, then
$$\mu(E) = \lim_{n \to \infty} \mu(E_n) = 0.$$
(b) Show also the following stronger property: $\lim_{n \to \infty} n\mu(E_n) = 0$.

Problem 5. Suppose F and G are right-continuous, non-decreasing functions on $[a, b]$, $-\infty < a < b < \infty$. (a) Show that
$$\int_{[a,b]} G(x) dF(x) = F(b)G(b) - F(a)G(a) - \int_{[a,b]} F(x-)dG(x).$$
(b) Give an example of $F, G, [a, b]$ for which the formula does not hold if $F(x-)$ is replaced by $F(x)$ in the last integral.

Problem 6. Suppose \mathcal{A}_1, \mathcal{A}_2 and \mathcal{A}_3 are independent classes of events, each closed under intersections and, without loss of generality, containing Ω. Let $\mathcal{B}_1 = \sigma(\mathcal{A}_1)$, $\mathcal{B}_2 = \sigma(\mathcal{A}_2)$ and $\mathcal{B}_3 = \sigma(\mathcal{A}_3)$. Show that \mathcal{B}_1, \mathcal{B}_2 and \mathcal{B}_3 are also independent classes of events.

All six problems carry equal weight. Good luck!