General Instructions

This examination is closed-book, and consists of three questions. Answer all three as clearly and concisely as you are able. Use of the internet and/or mobile devices is not permitted.
Question 1. (33 points)

a. (11 points) For all positive integers \(n \) describe a directed graph with \(n \) nodes, which has at least \(2^{cn} \) distinct directed cycles, for some fixed \(c > 0 \).

(There is no need to optimize \(c \); any \(c > 0 \) will do.)

b. (22 points) You are given a directed graph \(G = (N, A) \) with \(n \) nodes and \(m \) arcs.

Describe an integer programming problem which determines the minimum number of arcs that must be removed from \(G \) so the remaining graph has no directed cycle.

The IP should have \(O(n + m) \) variables and constraints; the range of all variables (i.e. the difference between their upper and lower bounds) should also be \(O(n + m) \).

Carefully describe in words the meaning of all variables and constraints.

(Hint: a directed graph has no directed cycle, if and only if it has a . . .)
Question 2. (33 points) Suppose that $B \in \mathbb{R}^{m \times m}$ is a positive semi-definite matrix (i.e., $x^T B x \geq 0$ for all $x \in \mathbb{R}^m$). Let $b \in \mathbb{R}^m$ be a given vector. Consider the set

$$S = \{ y \in \mathbb{R}^m \mid By \geq b, \ y \geq 0 \}.$$

Suppose that S is nonempty. Prove that S is an unbounded set.

Hint: A subset S of an Euclidean space is said to be bounded, if there exists a positive real number M such that every $x \in S$ satisfies $\|x\|_2 \leq M$. We say S is unbounded, if it is not bounded. You can use the fact that S is unbounded if and only if there exists a vector $c \in \mathbb{R}^m$ such that the LP $\max_{y \in S} c^T y$ is an unbounded LP.

Question 3. (34 points) Consider the following linear program in canonical form, given in a simplex tableau.

\[
\begin{array}{cccccc|c|c}
\text{z} & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & \text{rhs} & \text{basic var} \\
1 & 4 & -3 & -2 & 0 & 0 & 0 & 10 & z = 10 \\
0 & 0.6 & -0.5 & -0.4 & 1 & 0 & 0 & 2 & x_4 = 2 \\
0 & -0.2 & 0.8 & -0.5 & 0 & 1 & 0 & 3 & x_5 = 3 \\
0 & -0.3 & -0.2 & 1 & 0 & 0 & 1 & 4 & x_6 = 4 \\
\end{array}
\]

Prove the following statements.

a. (12 points) In any feasible solution x of the above linear program, at least one of the two components x_1 and x_4 is strictly positive.

b. (22 points) In any basic feasible solution x of the above linear program, one of the two components x_1 and x_4 is exactly zero. (Hint: look at other pairs of variables as well.)