Instructions: All problems have equal weight; partial credit will be given for each part of a problem. In some cases, different parts of a problem can be done independently, so if you are unsure how to handle one part of a problem, don’t hesitate to try the others. No answer should require a great deal of computation or a complicated proof. Please show your work, and briefly explain your reasoning: correct answers with no work or explanation will not receive full credit.

1. Let X_1, \ldots, X_n be i.i.d. random variables with common density

$$f(x|\theta, \gamma) = \frac{\theta \gamma^\theta}{x^{\theta+1}} I(x \geq \gamma)$$

having parameters $\theta > 0$ and $\gamma > 0$. Note that $f(x|\theta, \gamma)$ is supported on $[\gamma, \infty)$.

a. Find the MLE of γ when θ is fixed. Does the estimate depend on θ?

b. Find the MLE of θ when γ is set to the value you found above.

c. Describe the general form of the likelihood ratio test statistic for testing

$$H_0 : \theta = 1 \text{ and } \gamma \text{ is arbitrary} \quad \text{vs} \quad H_1 : \theta \neq 1 \text{ and } \gamma \text{ is arbitrary},$$

and write out the statistic using the results of a. and b. above. You need not simplify.

2. Let $X \sim \mathcal{N}_d(\mu, \Sigma)$ be a multinormal random vector. Define $Y = CX$ and $Z = DX$ where $C \in \mathbb{R}^{l \times d}$ and $D \in \mathbb{R}^{k \times d}$ are matrices.

a. What is the distribution of Y?

b. Find necessary and sufficient conditions on C and D under which Y and Z are independent. Justify your answer.
3. Let \(\mathcal{P} = \{ f(x|\theta) : \theta \in \Theta \} \) be a family of densities on a set \(\mathcal{X} \), and suppose that we are interested in estimating \(\theta \) from an observation \(X \in \mathcal{X} \) with \(X \sim f(x|\theta) \in \mathcal{P} \).

a. Define what is meant by an estimator and a loss function in this setting.

b. Define the risk function of an estimator.

c. Let \(\pi \) be a prior distribution on \(\Theta \). Define the Bayes risk of an estimator under \(\pi \).

d. Let \(\mathcal{D} \) be a family of estimators. Define what it means for an estimator to be admissible.

4. Let \(V \subseteq \mathbb{R}^d \) be a finite set of vectors \(v = (v_1, \ldots, v_d)^t \) with \(L = \max_{v \in V} ||v||_2 \), and let \(\varepsilon_1, \ldots, \varepsilon_d \) be independent sign variables with \(\mathbb{P}(\varepsilon_i = 1) = \mathbb{P}(\varepsilon_i = -1) = 1/2 \). In answering the questions below, you may appeal to results from the lectures, but explain your reasoning.

a. Bound the moment generating functions of \(\sum_{i=1}^{d} \varepsilon_i v_i \) in terms of the constant \(L \).

b. Use the MGF bound to get an upper bound on \(\mathbb{E} \left[\max_{v \in V} \sum_{i=1}^{d} \varepsilon_i v_i \right] \).

c. Use the MGF bound to get an upper bound on \(\mathbb{P}(\max_{v \in V} \sum_{i=1}^{d} \varepsilon_i v_i > t) \) when \(t > 0 \).

5. Let \(X_1, X_2, \ldots \) be i.i.d. positive random variables with finite expectation. For \(n \geq 1 \) define \(S_n = X_1 + \cdots + X_n \).

a. Calculate \(\mathbb{E}(S_n/S_m) \) when \(m \geq n \).

b. Find a lower bound for \(\mathbb{E}(S_n/S_m) \) when \(n \geq m \).

6. Let \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) be a convex function that is Lipschitz with constant \(L \), and let \(U \in \mathbb{R}^d \) be uniformly distributed in the unit ball \(B(1) = \{ x : ||x|| = 1 \} \). Fix \(\delta > 0 \) and define a new function \(g(x) := \mathbb{E}f(x + \delta U) \). You may assume that \(g \) is well-defined for each \(x \).

a. What is the expected value of \(U \)?

b. Is \(g \leq f \), \(g \geq f \), or neither? Justify your answer.

c. Is \(g \) convex, concave or neither?

d. Is \(g \) Lipschitz?

e. What can you say about \(\sup_x |g(x) - f(x)| \)?